Monads and comonads on module categories

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monads and Comonads on Module Categories

Let A be a ring and MA the category of right A-modules. It is well known in module theory that any A-bimodule B is an A-ring if and only if the functor − ⊗A B : MA → MA is a monad (or triple). Similarly, an A-bimodule C is an A-coring provided the functor − ⊗A C : MA → MA is a comonad (or cotriple). The related categories of modules (or algebras) of −⊗A B and comodules (or coalgebras) of − ⊗A C...

متن کامل

Monads and Comonads in Module Categories

Let A be a ring and MA the category of A-modules. It is well known in module theory that for any A-bimodule B, B is an A-ring if and only if the functor − ⊗A B : MA → MA is a monad (or triple). Similarly, an A-bimodule C is an A-coring provided the functor − ⊗A C : MA → MA is a comonad (or cotriple). The related categories of modules (or algebras) of −⊗A B and comodules (or coalgebras) of − ⊗A ...

متن کامل

Azumaya Monads and Comonads

The definition of Azumaya algebras over commutative rings R requires the tensor product of modules over R and the twist map for the tensor product of any two R-modules. Similar constructions are available in braided monoidal categories, and Azumaya algebras were defined in these settings. Here, we introduce Azumaya monads on any category A by considering a monad (F,m, e) on A endowed with a dis...

متن کامل

Coherence for monoidal monads and comonads

The goal of this paper is to prove coherence results with respect to relational graphs for monoidal monads and comonads, i.e. monads and comonads in a monoidal category such that the endofunctor of the monad or comonad is a monoidal functor (this means that it preserves the monoidal structure up to a natural transformation that need not be an isomorphism). These results are proved first in the ...

متن کامل

Monads on Dagger Categories

The theory of monads on categories equipped with a dagger (a contravariant identity-on-objects involutive endofunctor) works best when all structure respects the dagger: the monad and adjunctions should preserve the dagger, and the monad and its algebras should satisfy the so-called Frobenius law. Then any monad resolves as an adjunction, with extremal solutions given by the categories of Kleis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2009

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2009.06.003